MRK Merck & Company Inc. (new)

85.81
+0.17  (+0%)
Previous Close 85.64
Open 85.57
52 Week Low 65.25
52 Week High 92.64
Market Cap $217,034,176,217
Shares 2,529,241,070
Float 2,527,713,907
Enterprise Value $236,805,176,216
Volume 11,744,659
Av. Daily Volume 7,715,784
Stock charts supplied by TradingView

Upcoming Catalysts

Drug Stage Catalyst Date
Keytruda - KEYNOTE-204
Classical Hodgkin lymphoma
PDUFA
PDUFA
Premium membership is required to view catalyst dates, analyst ratings, earnings dates and cash burn data. Click here to unlock and sign up to a 14-day FREE TRIAL.
Keytruda KN-355
Triple negative breast cancer (TNBC)
PDUFA priority review
PDUFA priority review
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque sapien.
LENVIMA (lenvatinib) + Keytruda - KN-581
Renal cell carcinoma (RCC) - cancer
Phase 3
Phase 3
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque sapien.
Keytruda KN-122
Nasopharyngeal Carcinoma
Phase 3
Phase 3
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque sapien.
Vericiguat
Heart Failure
PDUFA priority review
PDUFA priority review
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque sapien.
Keytruda KN-522
Triple negative breast cancer (TNBC)
PDUFA
PDUFA
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque sapien.
Lynparza - OlympiA
HER2-negative breast cancer
Phase 3
Phase 3
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque sapien.

Drug Pipeline

Drug Stage Notes
ARQ 092
Overgrowth Diseases
Phase 1/2
Phase 1/2
Phase 1/2 MOSAIC initiation of dosing announced October 2, 2019.
MK-7264
Chronic cough
Phase 3
Phase 3
Phase 3 data released March 17, 2020. 45 mg arm met primary endpoint; 15 mg arm did not meet the primary efficacy endpoint.
Keytruda + chemo (KEYNOTE-590)
Esophageal Cancer
Phase 3
Phase 3
Phase 3 primary endpoints of overall survival (OS) and progression-free survival (PFS) met - August 19, 2020.
ARQ 531
B-cell malignancies
Phase 1
Phase 1
Phase 1 presentation at ASH December 9, 2019. 89% ORR in CLL patients; 50% in Richter’s Transformation.
MK-4482 (EIDD-2801)
COVID-19
Phase 2
Phase 2
Phase 1 trial has been completed - well-tolerated. Phase 2 trial is underway.
V590 (IAVI)
COVID-19 vaccine
Phase 1
Phase 1
Phase 1 trial to commence 2H 2020.
V591 (Themis)
COVID-19 vaccine
Phase 1
Phase 1
Phase 1 trial to commence 3Q 2020.
KEYTRUDA and Inlyta - KEYNOTE-426
Renal cell carcinoma
Approved
Approved
FDA approval announced April 22, 2019.
Keytruda and Lenvima
Hepatocellular Carcinoma
CRL
CRL
CRL issued July 8, 2020.
Keytruda KN-177
Colorectal cancer (CRC)
Approved
Approved
FDA Approval announced June 29, 2020.
Keytruda
Cutaneous squamous cell carcinoma (cSCC)
Approved
Approved
FDA approval announced June 24, 2020.
Keytruda KN-361
Bladder cancer
Phase 3
Phase 3
Phase 3 data did not meet dual primary endpoints - June 9, 2020.
Keytruda
Solid tumors - TMB-H ≥10 mutations/megabase
Approved
Approved
FDA Approval June 17, 2020.
GARDASIL 9
Prevention HPV-Related Head and Neck Cancers
Approved
Approved
FDA Approval announced June 12, 2020.
Recarbrio
Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia (HABP/VABP)
Approved
Approved
FDA approval announced June 4, 2020.
ERVEBO (V920)
Ebola
Approved
Approved
FDA Approval announced December 19, 2019.
Lynparza
Castration-Resistant Prostate Cancer
Approved
Approved
FDA Approval announced May 19, 2020.
Lynparza + Avastin- PAOLA-1
First-line ovarian cancer
Approved
Approved
FDA Approval announced May 8, 2020.
Keytruda
6-week dosing for melanoma and other indications
NDA Filing
NDA Filing
CRL issued February 18, 2020. Resubmission announced April 23, 2020.
Selumetinib
Neurofibromatosis type 1 plexiform neurofibromas
Approved
Approved
FDA Approval announced April 13, 2020.
Keytruda KN-240
Hepatocellular Carcinoma
Phase 3
Phase 3
Phase 3 data February 19, 2019 did not meet primary endpoints.
Keytruda KN-062
Gastric cancer
Phase 3
Phase 3
Phase 3 data released April 25, 2019 noted that monotherapy arm met noninferiority primary endpoint. Combo arm did not meet OS/PFS endpoints.
Enfortumab vedotin and Keytruda - EV-301
Urothelial cancer
Phase 3
Phase 3
Phase 3 enrolment completed in January 2020.
DIFICID (fidaxomicin)
Clostridium difficile infections (CDI)
Approved
Approved
FDA Approval announced January 27, 2020.
Keytruda KN-604
Small cell lung cancer (SCLC)
Phase 3
Phase 3
Phase 3 data met PFS primary endpoint; overall survival primary endpoint not met - January 6, 2020.
ARQ 751
Solid tumors
Phase 1
Phase 1
Phase 1b trial ongoing.
Keytruda KN-057
NMIBC Bladder cancer
Approved
Approved
FDA Approval announced January 8, 2020.
Lynparza (POLO)
Pancreatic cancer
Approved
Approved
FDA Approval announced December 30, 2019.
Pembrolizumab vs chemotherapy
Malignant pleural mesothelioma (MPM)
Phase 3
Phase 3
Phase 3 data presented at ESMO September 2019.
DELSTRIGO (doravirine/lamivudine/tenofovir disoproxil fumarate)
HIV
Approved
Approved
FDA Approval for sNDA announced September 20, 2019.
Keytruda and Lenvima
Endometrial cancer
Approved
Approved
FDA Approval announced September 17, 2019.
Keytruda KN-181
Esophageal Cancer
Approved
Approved
FDA Approval announced July 31, 2019.
MK-8591
HIV
Phase 2
Phase 2
Phase 3 trial planned.
Imipenem/ cilastatin
Complicated urinary tract infections (cUTI) and Complicated intra-abdominal infections (cIAI)
Approved
Approved
FDA Approval announced July 17, 2019.
Keytruda - KN-158
Small cell lung cancer (SCLC)
Approved
Approved
FDA Approval announced June 18, 2019.
Keytruda - KEYNOTE-042
Non-small cell lung cancer (NSCLC)
Approved
Approved
FDA Approval announced April 11, 2019.
KEYTRUDA + carboplatin-paclitaxel or nab-paclitaxel KEYNOTE-407
Squamous non-small cell lung cancer (sNSCLC)
Approved
Approved
FDA approval announced October 30, 2018.
Keytruda KN-119
Triple negative breast cancer (TNBC)
Phase 3
Phase 3
Phase 3 data May 20, 2019 did not meet primary endpoint.
Keytruda KN-048
Head and neck squamous cell carcinoma (HNSCC)
Approved
Approved
FDA Approval announced June 11, 2019.
ZERBAXA(ceftolozane and tazobactam)
Hospital-acquired bacterial pneumonia (HABP)
Approved
Approved
FDA approval announced June 3, 2019.
KEYTRUDA - EORTC1325/KEYNOTE-054
Melanoma
Approved
Approved
FDA Approval announced February 19, 2019.
(MK-3475-189/KEYNOTE-189)
First Line Metastatic Non-squamous Non-small Cell Lung Cancer (NSCLC)
Approved
Approved
FDA label expansion announced January 31, 2019.
Lynparza - SOLO 1
First-line ovarian cancer following platinum-based chemotherapy
Approved
Approved
FDA Approval announced December 19, 2018.
Keytruda KN-17
Merkel Cell Carcinoma
Approved
Approved
FDA Approval announced December 19, 2018.
Keytruda - KEYNOTE-224
Hepatocellular carcinoma (HCC)
Approved
Approved
FDA approval announced November 9, 2018.
GARDASIL 9
Human Papilloma virus vaccine
Approved
Approved
Approval announced October 5, 2018.
LENVIMA (lenvatinib)
Hepatocellular Carcinoma (HCC)
Approved
Approved
FDA approval announced August 16, 2018.
Keytruda
Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma (PMBCL)
Approved
Approved
Approval announced June 13, 2018.
KEYTRUDA
Cervical cancer
Approved
Approved
Approval announced June 12, 2018.
KEYTRUDA + chemo (KEYNOTE-021)
First-Line Nonsquamous Non-small cell lung cancer (NSCLC)
Approved
Approved
FDA approval (label expansion) announced June 5, 2018.
Epacadostat with Keytruda - ECHO-301
Cancer - first-line metastatic melanoma.
Phase 3
Phase 3
Phase 3 trial did not meet primary endpoint - noted April 6, 2018.
MK-8931 (019) - Verubecestat
Mild-to-moderate Alzheimer's
Phase 3
Phase 3
Phase 3 interim analysis by DMC advised trial to be discontinued due to lack of benefit vs risk.
Lynparza
Breast cancer
Approved
Approved
Phase 3 data released February 17, 2016 - primary endpoint met. Late breaker at ASCO June 4, 2017 showed HR of 0.58 (42% reduction of risk of disease progression or death). Approval announced January 12, 2018.
Letermovir
Cytomegalovirus (CMV) Infection
Approved
Approved
Approval announced November 9, 2017.
Keytruda
First-Line Treatment of Metastatic Non-Squamous Non-Small Cell Lung Cancer
Approved
Approved
Approved May 10, 2017.
MK-8931 (017) - Verubecestat
Mild-to-moderate Alzheimer's
Phase 3
Phase 3
Phase 3 trial stopped due to lack of efficacy - February 14, 2017.
KEYTRUDA
Microsatellite Instability-High Cancer
Approved
Approved
PDUFA date March 8, 2017 extended to June 9, 2017 due to submission of extra data. Approved May 23, 2017.
RENFLEXIS - SB2 (infliximab biosimilar)
Biosimilar candidate of Remicade
Approved
Approved
BLA acceptance announced May 23, 2016 by partner Samsung Bioepis. Approval annuonced April 21, 2017.
ISENTRESS
HIV-1
Approved
Approved
Approval announced May 30, 2017.
KEYTRUDA
Relapsed or Refractory Classical Hodgkin Lymphoma
Approved
Approved
Approval announced March 14, 2017.
Ertugliflozin
Type 2 diabetes
Approved
Approved
Approval announced December 20, 2017.
KEYTRUDA
First and Second line locally advanced or metastatic urothelial cancer - bladder cancer
Approved
Approved
Approved May 18, 2017.
Odactra (MK-8237)
House dust mite allergies
Approved
Approved
Approved March 1, 2017.
Januvia (Sitagliptin)
Type 2 Diabetes
CRL
CRL
CRL issued April 7 2017. sNDA for approved drug requested to include data on cardiovascular effects
Keytruda
Cancer - Third-line Gastric or Gastroesophageal Junction Adenocarcinoma
Approved
Approved
Approved Sept. 22, 2017 under accelerated approval in patients undergoing third-line treatment following data from Phase 2 Keynote-59 trial. Phase 3 data released December 14, 2017 in patients undergoing second-line treatment, did not meet the primary endpoint of overall survival, nor did it show a significant improvement in PFS.
KEYNOTE-040 KEYTRUDA
Recurrent or metastatic head and neck squamous cell carcinoma (HNSCC)
Approved
Approved
Phase 3 trial did not meet primary endpoint - July 24, 2017. Awarded accelerated approval in 2016.

Latest News

  1. LYNPARZA is the only PARP inhibitor to demonstrate overall survival in metastatic castration-resistant prostate cancer

    AstraZeneca and Merck (NYSE:MRK), known as MSD outside the United States and Canada, today announced final results from the Phase III PROfound trial that showed LYNPARZA (olaparib) demonstrated a statistically significant and clinically meaningful improvement in overall survival (OS) versus enzalutamide or abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC) with BRCA1/2 or ATM gene mutations, a subpopulation of homologous recombination repair (HRR) gene mutations. Patients had progressed on prior treatment with new hormonal agent (NHA) treatments (i.e., enzalutamide and abiraterone).

    Prostate cancer…

    LYNPARZA is the only PARP inhibitor to demonstrate overall survival in metastatic castration-resistant prostate cancer

    AstraZeneca and Merck (NYSE:MRK), known as MSD outside the United States and Canada, today announced final results from the Phase III PROfound trial that showed LYNPARZA (olaparib) demonstrated a statistically significant and clinically meaningful improvement in overall survival (OS) versus enzalutamide or abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC) with BRCA1/2 or ATM gene mutations, a subpopulation of homologous recombination repair (HRR) gene mutations. Patients had progressed on prior treatment with new hormonal agent (NHA) treatments (i.e., enzalutamide and abiraterone).

    Prostate cancer is the second-most common type of cancer in men. An estimated 191,930 men in the United States will be diagnosed with prostate cancer in 2020. Approximately 20-30% of men with mCRPC have an HRR gene mutation.

    In the key secondary endpoint of OS, LYNPARZA reduced the risk of death in patients with BRCA1, BRCA2, ATM mutations by 31% versus enzalutamide or abiraterone (based on a hazard ratio [HR] of 0.69; 95% confidence interval [CI] 0.50-0.97; p=0.0175). Median OS was 19.1 months for LYNPARZA versus 14.7 months for enzalutamide or abiraterone, despite 66% of men on NHA treatments had crossed over to receive treatment with LYNPARZA following disease progression.

    An exploratory analysis also showed a non-statistically significant improvement in OS in the overall trial population of men with HRR gene mutations (BRCA1/2, ATM, CDK12 and 11 other HRRm genes), reducing the risk of death by 21% with LYNPARZA versus enzalutamide or abiraterone (based on a HR of 0.79; 95% CI 0.61-1.03). Median OS was 17.3 months versus 14.0 months for enzalutamide or abiraterone.

    Johann de Bono, one of the principal investigators of the PROfound trial, Head of Drug Development at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust, said: "LYNPARZA has demonstrated significant clinical benefit across key endpoints in PROfound and the final overall survival results reinforce its potential to change the treatment standard for certain men with metastatic castration-resistant prostate cancer. The PROfound trial shows that LYNPARZA can play an important role in this new era of precision medicine in prostate cancer, bringing a targeted therapy at a molecular level to patients with a historically poor prognosis and few treatment options."

    José Baselga, Executive Vice President, Oncology R&D, said: "These results help to transform the treatment landscape for certain men with metastatic castration-resistant prostate cancer, where overall survival has been very difficult to achieve. LYNPARZA is the only PARP inhibitor to demonstrate overall survival versus enzalutamide or abiraterone for men with BRCA or ATM mutations. We look forward to continuing to bring LYNPARZA to these patients around the world."

    Roy Baynes, Senior Vice President and Head of Global Clinical Development, Chief Medical Officer, Merck, said: "The PROfound trial is the first positive Phase III trial using molecular biomarker testing to help identify treatment options for certain men with metastatic castration-resistant prostate cancer. These results further underpin the importance of genomic testing for HRR gene mutations to identify this at-risk patient population and help physicians make treatment decisions. These results demonstrate the potential of LYNPARZA for metastatic castration-resistant prostate cancer patients with certain HRR mutations."

    Final OS results from the PROfound trial were presented on Sunday, September 20 during the Presidential Symposium at the 2020 European Society of Medical Oncology virtual congress, and published simultaneously in The New England Journal of Medicine.

    Summary of OS results

    OS data cut-off date was March 20, 2020

     

    Men with BRCA1/2 and

    ATM mutations

    Overall population

    (HRRm - BRCA1/2, ATM

    and 12 other genes)

    LYNPARZA

    n=162

    enzalutamide

    and

    abiraterone

    n=83

    LYNPARZA

    n=256

    enzalutamide

    and

    abiraterone

    n=131

    Median, months

    19.1

    14.7

    17.3

    14.0

    Hazard ratio (95% CI)

    0.69 (0.50, 0.97)

    0.79 (0.61, 1.03)

    p-value

    0.0175

    n/a

    Kaplan-Meier estimates of OS

    6-months (%)

    91

    84

    92

    83

    12-months (%)

    73

    61

    67

    56

    18-months (%)

    54

    42

    47

    39

    Median follow-up, months

    21.9

    21.0

    20.7

    20.5

    The most common adverse events (AEs) ≥20% were anemia (50%), nausea (43%), fatigue/asthenia (42%), decreased appetite (31%), diarrhea (21%) and vomiting (20%). The most common ≥ grade 3 AEs were anemia (23%), nausea (2%), fatigue/asthenia (3%), decreased appetite (2%) and diarrhea (1%). Twenty percent of patients on LYNPARZA discontinued treatment due to AEs.

    The Phase III PROfound trial had met its primary endpoint in August 2019, showing LYNPARZA significantly improved radiographic progression-free survival (rPFS) in men with BRCA1/2 or ATM genes, and had met a key secondary endpoint of rPFS in the overall HRRm population, which formed the basis of the US approval in May 2020. Regulatory reviews are ongoing in the EU and other countries.

    AstraZeneca and Merck are exploring additional trials in metastatic prostate cancer including the ongoing Phase III PROpel trial testing LYNPARZA as a 1st-line medicine for patients with mCRPC in combination with abiraterone versus abiraterone alone. Data is anticipated in the second half of 2021.

    IMPORTANT SAFETY INFORMATION

    CONTRAINDICATIONS

    There are no contraindications for LYNPARZA.

    WARNINGS AND PRECAUTIONS

    Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

    Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

    If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

    Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

    Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

    Females

    Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

    Males

    Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

    Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.

    ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

    Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

    ADVERSE REACTIONS—First-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab

    Most common adverse reactions (Grades 1-4) in ≥10% of patients treated with LYNPARZA/bevacizumab compared to a ≥5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%) and leukopenia (18%). In addition, the most common adverse reactions (≥10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%) and headache (14%).

    In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%) and decrease in platelets (35%).

    ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

    Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

    Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%) and dyspepsia (20%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

    ADVERSE REACTIONS—Advanced gBRCAm Ovarian Cancer

    Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

    ADVERSE REACTIONS—gBRCAm, HER2-Negative Metastatic Breast Cancer

    Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

    ADVERSE REACTIONS—First-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma

    Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).

    ADVERSE REACTIONS—HRR Gene-mutated Metastatic Castration-Resistant Prostate Cancer

    Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).

    DRUG INTERACTIONS

    Anticancer Agents: Clinical studies of LYNPARZA in combination with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

    CYP3A Inhibitors: Avoid concomitant use of strong or moderate CYP3A inhibitors. If a strong or moderate CYP3A inhibitor must be co-administered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

    CYP3A Inducers: Avoid concomitant use of strong or moderate CYP3A inducers when using LYNPARZA. If a moderate inducer cannot be avoided, there is a potential for decreased efficacy of LYNPARZA.

    USE IN SPECIFIC POPULATIONS

    Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

    Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

    Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

    Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

    INDICATIONS

    LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

    First-Line Maintenance BRCAm Advanced Ovarian Cancer

    For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    First-Line Maintenance HRD Positive Advanced Ovarian Cancer in Combination with Bevacizumab

    In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

    • a deleterious or suspected deleterious BRCA mutation, and/or
    • genomic instability

    Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    Maintenance Recurrent Ovarian Cancer

    For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

    Advanced gBRCAm Ovarian Cancer

    For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    gBRCAm, HER2-Negative Metastatic Breast Cancer

    For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant, or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer

    For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    HRR Gene-mutated Metastatic Castration-Resistant Prostate Cancer

    For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    Please click here for complete Prescribing Information, including Patient Information (Medication Guide).

    About Metastatic Castration-Resistant Prostate Cancer (mCRPC)

    Prostate cancer is the second-most common cancer in men. An estimated 191,930 men in the United States will be diagnosed with prostate cancer in 2020. Development of prostate cancer is often driven by male sex hormones called androgens, including testosterone. In patients with mCRPC, their prostate cancer grows and spreads to other parts of the body despite the use of androgen-deprivation therapy to block the action of male sex hormones. Approximately 10-20% of men with advanced prostate cancer will develop CRPC within five years, and at least 84% of these men will have metastases at the time of CRPC diagnosis. Of men with no metastases at CRPC diagnosis, 33% are likely to develop metastases within two years. Despite advances in treatment for men with mCRPC, five-year survival is low and extending survival remains a key goal.

    About Homologous Recombination Repair (HRR) Gene Mutations

    HRR genes allow for accurate repair of damaged DNA in normal cells. HRR deficiency (HRD) means the DNA damage cannot be repaired, and can result in normal cell death. This is different in cancer cells, where a mutation in HRR pathways leads to abnormal cell growth and therefore cancer. HRD is a well-documented target for PARP inhibitors, such as LYNPARZA. PARP inhibitors block a rescue DNA damage repair mechanism by trapping PARP bound to DNA single-strand breaks which leads to replication fork stalling causing their collapse and the generation of DNA double-strand breaks, which in turn lead to cancer cell death.

    About PROfound

    PROfound is a prospective, multi-center, randomized, open-label, Phase III trial testing the efficacy and safety of LYNPARZA versus enzalutamide or abiraterone in patients with mCRPC who have progressed on prior treatment with NHA treatments (abiraterone or enzalutamide) and have a qualifying tumor mutation in BRCA1/2, ATM or one of 12 other genes involved in the HRR pathway.

    The trial was designed to analyze patients with HRRm genes in two cohorts: the primary endpoint was rPFS in those with mutations in BRCA1/2 or ATM genes and then, if LYNPARZA showed clinical benefit, a formal analysis was performed of the overall trial population of patients with HRRm genes (BRCA1/2, ATM, CDK12 and 11 other HRRm genes; a key secondary endpoint).

    About LYNPARZA

    LYNPARZA® (olaparib) is a first-in-class PARP inhibitor and the first targeted treatment to block DNA damage response (DDR) in cells/tumors harboring a deficiency in HRR, such as mutations in BRCA and/or BRCA2. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of PARP-dependent tumor types with defects and dependencies in the DDR pathway.

    LYNPARZA is currently approved in a number of countries, including in the US, for the maintenance treatment of platinum-sensitive relapsed ovarian cancer. It is approved in the US, the EU, Japan, China, and several other countries as 1st-line maintenance treatment of BRCA-mutated advanced ovarian cancer following response to platinum-based chemotherapy. It is also approved in the US as a 1st-line maintenance treatment with bevacizumab for patients with homologous recombination deficiency (HRD)-positive advanced ovarian cancer. LYNPARZA is approved in the US, Japan, and a number of other countries for germline BRCA-mutated, HER2-negative, metastatic breast cancer, previously treated with chemotherapy; in the EU, this includes locally advanced breast cancer. It is also approved in the US and several other countries for the treatment of germline BRCA-mutated metastatic pancreatic cancer. LYNPARZA is approved in the US for HRR gene-mutated metastatic castration-resistant prostate cancer. Regulatory reviews are underway in several countries for ovarian, breast, pancreatic and prostate cancers.

    LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has been used to treat over 30,000 patients worldwide. LYNPARZA has the broadest and most advanced clinical trial development program of any PARP inhibitor, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types. LYNPARZA is the foundation of AstraZeneca's industry-leading portfolio of potential new medicines targeting DDR mechanisms in cancer cells.

    About the AstraZeneca and Merck strategic oncology collaboration

    In July 2017, AstraZeneca and Merck & Co., Inc., Kenilworth, NJ, US, known as MSD outside the US and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize LYNPARZA, the world's first PARP inhibitor, and selumetinib, a MEK inhibitor, for multiple cancer types. Working together, the companies will develop LYNPARZA and other compounds in combination with other potential new medicines and as monotherapies. Independently, the companies will develop LYNPARZA and other compounds in combination with their respective PD-L1 and PD-1 medicines.

    About AstraZeneca in oncology

    AstraZeneca has a deep-rooted heritage in oncology and offers a quickly growing portfolio of new medicines that has the potential to transform patients' lives and the Company's future. With seven new medicines launched between 2014 and 2020, and a broad pipeline of small molecules and biologics in development, the Company is committed to advance oncology as a key growth driver for AstraZeneca focused on lung, ovarian, breast and blood cancers.

    By harnessing the power of four scientific platforms – Immuno-Oncology, Tumor Drivers and Resistance, DNA Damage Response and Antibody Drug Conjugates – and by championing the development of personalized combinations, AstraZeneca has the vision to redefine cancer treatment and, one day, eliminate cancer as a cause of death.

    About AstraZeneca

    AstraZeneca is a global, science-led biopharmaceutical company that focuses on the discovery, development and commercialization of prescription medicines, primarily for the treatment of diseases in three therapy areas - Oncology, Cardiovascular, Renal & Metabolism and Respiratory & Immunology. AstraZeneca operates in over 100 countries and its innovative medicines are used by millions of patients worldwide. Please visit www.astrazeneca-us.com and follow us on Twitter @AstraZenecaUS.

    US-45202 Last Updated 09/20

    View Full Article Hide Full Article
  2. LYNPARZA is the Only PARP Inhibitor to Demonstrate Improved Overall Survival in Metastatic Castration-Resistant Prostate Cancer

    AstraZeneca and Merck (NYSE:MRK), known as MSD outside the United States and Canada, today announced final results from the Phase 3 PROfound trial which showed LYNPARZA demonstrated a statistically significant and clinically meaningful improvement in overall survival (OS) versus enzalutamide or abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC) who have BRCA1/2 or ATM gene mutations. Patients had progressed on prior treatment with enzalutamide and/or abiraterone.

    Prostate cancer is the second most common type of cancer in men, with an estimated 1.3 million new patients diagnosed worldwide…

    LYNPARZA is the Only PARP Inhibitor to Demonstrate Improved Overall Survival in Metastatic Castration-Resistant Prostate Cancer

    AstraZeneca and Merck (NYSE:MRK), known as MSD outside the United States and Canada, today announced final results from the Phase 3 PROfound trial which showed LYNPARZA demonstrated a statistically significant and clinically meaningful improvement in overall survival (OS) versus enzalutamide or abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC) who have BRCA1/2 or ATM gene mutations. Patients had progressed on prior treatment with enzalutamide and/or abiraterone.

    Prostate cancer is the second most common type of cancer in men, with an estimated 1.3 million new patients diagnosed worldwide in 2018. Approximately 20-30% of men with mCRPC have an homologous recombination repair (HRR) gene mutation, of which BRCA1/2 and ATM mutations are a subpopulation. Approximately 10-20% of early stage hormone-sensitive prostate cancer cases will develop into CRPC within approximately five years.

    In the key secondary endpoint of OS in men with BRCA1/2 or ATM gene mutations, LYNPARZA reduced the risk of death by 31% vs. retreatment with enzalutamide or abiraterone (HR 0.69 [95% CI, 0.50, 0.97], p=0.0175). Median OS was 19.1 months for LYNPARZA vs. 14.7 months for enzalutamide or abiraterone, despite 66% of men on these treatments having crossed over to receive treatment with LYNPARZA following disease progression.

    An exploratory analysis also showed a non-statistically significant improvement in OS in the overall trial population of men with HRR gene mutations (BRCA1/2, ATM, CDK12 and 11 other HRR-mutated [HRRm] genes), reducing the risk of death by 21% with LYNPARZA vs. enzalutamide or abiraterone (HR 0.79 [95% CI, 0.61, 1.03]. Median OS was 17.3 months vs. 14 months for enzalutamide or abiraterone.

    The most common adverse reactions (ARs) ≥15% were anemia (50%), nausea (43%), fatigue/asthenia (42%), decreased appetite (31%), diarrhea (21%), vomiting (20%) and constipation (19%). Grade 3 or above ARs were anemia (23%), nausea (2%), fatigue or asthenia (3%), decreased appetite (2%) and diarrhea (1%). Twenty percent of patients on LYNPARZA discontinued treatment due to ARs and 23% had their dose reduced due to an AR.

    Dr. Johann de Bono, one of the principal investigators of the PROfound trial and head of drug development at the Institute for Cancer Research and the Royal Marsden Hospital, said, "LYNPARZA has demonstrated significant clinical benefit across key endpoints in PROfound and the final overall survival results for men with BRCA1/2 or ATM mutations reinforce its potential to change the standard of care for men with metastatic castration-resistant prostate cancer. The PROfound trial shows that LYNPARZA can play an important role in this new era of precision medicine in prostate cancer, bringing targeted therapy at a molecular level to patients with a historically poor prognosis and few treatment options."

    Dr. José Baselga, executive vice president, Oncology R&D, AstraZeneca said, "These results help to transform the treatment landscape in certain men with metastatic castration-resistant prostate cancer, where overall survival has been very difficult to achieve. LYNPARZA is the only PARP inhibitor to demonstrate overall survival versus enzalutamide or abiraterone for men with BRCA or ATM mutations. We look forward to continuing to bring LYNPARZA to these patients around the world."

    Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories, said, "The PROfound trial is the first positive Phase 3 trial using molecular biomarker testing to help identify treatment options for certain men with metastatic castration resistant prostate cancer. These results further underpin the importance of genomic testing for HRR gene mutations to help identify this at-risk patient population and help physicians make treatment decisions. These results demonstrate the potential of LYNPARZA for mCRPC patients with certain HRR mutations."

    Final OS results from the PROfound trial were presented on Sunday, Sept. 20, 2020, during the Presidential Symposium at the European Society for Medical Oncology (ESMO) Virtual Congress 2020 and published simultaneously in The New England Journal of Medicine.

    Summary of OS results

    OS data cut-off date was March 20, 2020.

     

    Men with BRCA1/2 and ATM

    mutations (Cohort A)

    Secondary Endpoint

    Overall population

    of men with HRR mutations

    (Cohorts A+B)

    Exploratory Endpoint

    LYNPARZA n=162

    Control

    n=83

    LYNPARZA n=256

    Control

    n=131

    Median, months

    19.1

    14.7

     

    17.3

    14.0

     

    Hazard ratio (95% CI)

     

    0.69 (0.50, 0.97)

     

    0.79 (0.61, 1.03)

     

    P-value

    0.0175 

    N/A

     

    The Phase 3 PROfound trial had met its primary endpoint in August 2019, showing significantly improved radiographic progression-free survival (rPFS) in men with mutations in BRCA1/2 or ATM genes, and had met a key secondary endpoint of rPFS in the overall HRRm population, which formed the basis of the U.S. Food and Drug Administration approval in May 2020. Regulatory reviews are ongoing in the EU and other regions.

    AstraZeneca and Merck are exploring additional trials in metastatic prostate cancer including the ongoing Phase 3 PROpel trial, with first data expected in 2021, evaluating LYNPARZA as a first-line medicine for patients with mCRPC in combination with abiraterone acetate versus abiraterone acetate alone.

    About PROfound

    PROfound is a prospective, multi-center, randomized, open-label, Phase 3 trial evaluating the efficacy and safety of LYNPARZA versus enzalutamide or abiraterone in patients with mCRPC who have progressed on prior treatment with abiraterone or enzalutamide and have a qualifying HRR tumor mutation (BRCA1/2, ATM, CDK12, BARD1, BRIP2, CHEK1, CHEK2, PALB2, PPP2R2A, RAD51B, RAD51D, RAD54L).

    The trial was designed to analyze patients with HRRm genes in two cohorts: the primary endpoint was rPFS in those with mutations in BRCA1/2 or ATM genes and then, if LYNPARZA showed clinical benefit, a formal analysis was performed of the overall trial population of patients with HRRm genes (BRCA1/2, ATM, CDK12 and 11 other HRR mutated genes; a key secondary endpoint).

    In the U.S., patients are selected for treatment with LYNPARZA based on the following FDA-approved companion diagnostics:

    • FoundationOne CDX: to identify patients with HRR gene alterations in prostate tumor tissue. FoundationOne is a registered trademark of Foundation Medicine, Inc.
    • BRACAnalysis CDX: a germline test to identify patients with BRCA1 and BRCA2 gene mutations. Myriad Genetics, Inc. owns and commercializes BRACAnalysis CDX.

    IMPORTANT SAFETY INFORMATION

    CONTRAINDICATIONS

    There are no contraindications for LYNPARZA.

    WARNINGS AND PRECAUTIONS

    Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

    Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

    If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

    Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

    Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

    Females

    Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

    Males

    Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

    Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.

    ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

    Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/ nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

    ADVERSE REACTIONS—First-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab

    Most common adverse reactions (Grades 1-4) in ≥10% of patients treated with LYNPARZA/bevacizumab compared to a ≥5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%) and leukopenia (18%). In addition, the most common adverse reactions (≥10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%), and headache (14%).

    In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%), and decrease in platelets (35%).

    ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

    Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

    Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

    ADVERSE REACTIONS—Advanced gBRCAm Ovarian Cancer

    Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

    ADVERSE REACTIONS—gBRCAm, HER2-negative Metastatic Breast Cancer

    Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

    Most common laboratory abnormalities (Grades 1-4) in >25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

    ADVERSE REACTIONS—First-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma

    Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).

    ADVERSE REACTIONS—HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

    Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).

    Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).

    DRUG INTERACTIONS

    Anticancer Agents: Clinical studies of LYNPARZA with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

    CYP3A Inhibitors: Avoid coadministration of strong or moderate CYP3A inhibitors when using LYNPARZA. If a strong or moderate CYP3A inhibitor must be coadministered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

    CYP3A Inducers: Avoid coadministration of strong or moderate CYP3A inducers when using LYNPARZA.

    USE IN SPECIFIC POPULATIONS

    Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

    Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

    Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

    Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

    INDICATIONS

    LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

    First-Line Maintenance BRCAm Advanced Ovarian Cancer

    For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    First-Line Maintenance HRD Positive Advanced Ovarian Cancer in Combination with Bevacizumab

    In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

    • a deleterious or suspected deleterious BRCA mutation and/or
    • genomic instability

    Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    Maintenance Recurrent Ovarian Cancer

    For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

    Advanced gBRCAm Ovarian Cancer

    For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    gBRCAm HER2-negative Metastatic Breast Cancer

    For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer, who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer

    For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

    For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

    Please click here for complete Prescribing Information, including Patient Information (Medication Guide).

    About LYNPARZA® (olaparib)

    LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as BRCA mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

    LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

    About Metastatic Castration-Resistant Prostate Cancer (mCRPC)

    Prostate cancer is the second-most common cancer in men, with an estimated 1.3 million new cases diagnosed worldwide in 2018, and is associated with a significant mortality rate. Development of prostate cancer is often driven by male sex hormones called androgens, including testosterone. In patients with mCRPC, their prostate cancer grows and spreads to other parts of the body despite the use of androgen-deprivation therapy to block the action of male sex hormones. Approximately 10-20% of men with advanced prostate cancer will develop CRPC within five years, and at least 84% of these men will have metastases at the time of CRPC diagnosis. Of men with no metastases at CRPC diagnosis, 33% are likely to develop metastases within two years. Despite advances in treatment for men with mCRPC, five-year survival is low and extending survival remains a key goal for treating these men.

    About Homologous Recombination Repair (HRR) Mutations

    HRR mutations occur in approximately 20-30% of patients with mCRPC. HRR genes allow for accurate repair of damaged DNA in normal cells. HRR deficiency (HRD) means the DNA damage cannot be repaired, and can result in normal cell death. This is different in cancer cells, where a mutation in HRR pathways leads to abnormal cell growth and therefore cancer. HRD is a well-documented target for PARP inhibitors, such as LYNPARZA. PARP inhibitors block a rescue DNA damage repair mechanism by trapping PARP bound to DNA single-strand breaks which leads to replication fork stalling causing their collapse and the generation of DNA double-strand breaks, which in turn lead to cancer cell death.

    About the AstraZeneca and Merck Strategic Oncology Collaboration

    In July 2017, AstraZeneca and Merck, known as MSD outside the United States and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize certain oncology products including LYNPARZA, the world's first PARP inhibitor, for multiple cancer types. Working together, the companies will develop these products in combination with other potential new medicines and as monotherapies. Independently, the companies will develop these oncology products in combination with their respective PD-L1 and PD-1 medicines.

    Merck's Focus on Cancer

    Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

    About Merck

    For more than 125 years, Merck, known as MSD outside of the United States and Canada, has been inventing for life, bringing forward medicines and vaccines for many of the world's most challenging diseases in pursuit of our mission to save and improve lives. We demonstrate our commitment to patients and population health by increasing access to health care through far-reaching policies, programs and partnerships. Today, Merck continues to be at the forefront of research to prevent and treat diseases that threaten people and animals – including cancer, infectious diseases such as HIV and Ebola, and emerging animal diseases – as we aspire to be the premier research-intensive biopharmaceutical company in the world. For more information, visit www.merck.com and connect with us on Twitter, Facebook, Instagram, YouTube and LinkedIn.

    Forward-Looking Statement of Merck & Co., Inc., Kenilworth, N.J., USA

    This news release of Merck & Co., Inc., Kenilworth, N.J., USA (the "company") includes "forward-looking statements" within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company's management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

    Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of the global outbreak of novel coronavirus disease (COVID-19); the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company's ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company's patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

    The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company's 2019 Annual Report on Form 10-K and the company's other filings with the Securities and Exchange Commission (SEC) available at the SEC's Internet site (www.sec.gov).

    View Full Article Hide Full Article
  3. Researchers Share New Data for Vibostolimab (MK-7684), Merck's Anti-TIGIT Therapy, as Monotherapy and in Combination With KEYTRUDA® (pembrolizumab); First-Time Results for First-in-Class MK-4830 (Anti-ILT4 Therapy); and Late-Breaking Data for MK-6482 (HIF-2α Inhibitor)

    Merck to Initiate Phase 3 Study of Vibostolimab in Non-Small Cell Lung Cancer in First Half of 2021

    Merck (NYSE:MRK), known as MSD outside the United States and Canada, today announced the presentation of new data for three investigational medicines in Merck's diverse and expansive oncology pipeline: vibostolimab (MK-7684), an anti-TIGIT therapy; MK-4830, a first-in-class anti-ILT4 therapy; and MK-6482, an oral HIF-2α inhibitor. Data from cohort expansions of a Phase 1b trial…

    Researchers Share New Data for Vibostolimab (MK-7684), Merck's Anti-TIGIT Therapy, as Monotherapy and in Combination With KEYTRUDA® (pembrolizumab); First-Time Results for First-in-Class MK-4830 (Anti-ILT4 Therapy); and Late-Breaking Data for MK-6482 (HIF-2α Inhibitor)

    Merck to Initiate Phase 3 Study of Vibostolimab in Non-Small Cell Lung Cancer in First Half of 2021

    Merck (NYSE:MRK), known as MSD outside the United States and Canada, today announced the presentation of new data for three investigational medicines in Merck's diverse and expansive oncology pipeline: vibostolimab (MK-7684), an anti-TIGIT therapy; MK-4830, a first-in-class anti-ILT4 therapy; and MK-6482, an oral HIF-2α inhibitor. Data from cohort expansions of a Phase 1b trial evaluating vibostolimab, as monotherapy and in combination with KEYTRUDA, Merck's anti-PD-1 therapy, in patients with metastatic non-small cell lung cancer (NSCLC; Abstract #1410P and Abstract #1400P), and first-time Phase 1 data for MK-4830 in patients with advanced solid tumors (Abstract #524O), demonstrated acceptable safety profiles for these two investigational medicines and early signals of anti-tumor activity. Additionally, late-breaking Phase 2 data for MK-6482 showed anti-tumor responses in von Hippel-Lindau (VHL) disease patients with clear cell renal cell carcinoma (RCC) and other tumors (Abstract #LBA26).

    "The new data for these three investigational medicines are encouraging and highlight continued momentum in our rapidly expanding oncology pipeline," Dr. Eric H. Rubin, senior vice president, early-stage development, clinical oncology, Merck Research Laboratories. "Over the past five years, KEYTRUDA has become foundational in the treatment of certain advanced cancers. Our broad oncology portfolio and promising pipeline candidates are a testament to our commitment to bring forward innovative new medicines to address unmet medical needs in cancer care."

    Vibostolimab (Anti-TIGIT Therapy): Early Findings in Metastatic NSCLC (Abstract #1410P and Abstract #1400P)

    Vibostolimab in combination with KEYTRUDA was evaluated in patients with metastatic NSCLC who had not previously received anti–PD-1/PD-L1 therapy, but the majority of whom had received >1 prior lines of therapy (73%, n=30/41) in Abstract #1410P. In Part B of the first-in-human, open-label, Phase 1 trial (NCT02964013) all patients received vibostolimab (200 or 210 mg) in combination with KEYTRUDA (200 mg) on Day 1 of each three-week cycle for up to 35 cycles. The primary endpoints of the study were safety and tolerability. Secondary endpoints included objective response rate (ORR), duration of response (DOR) and progression-free survival (PFS) based on investigator review per RECIST v1.1. In this anti-PD-1/PD-L1 naïve study, vibostolimab in combination with KEYTRUDA had a manageable safety profile and demonstrated promising anti-tumor activity. Treatment-related adverse events (TRAEs) with vibostolimab in combination with KEYTRUDA occurred in 34 patients (83%). The most frequent TRAEs (≥20%) were pruritus (34%), hypoalbuminemia (29%) and pyrexia (20%). Grade 3-5 TRAEs occurred in six patients (15%). No deaths due to TRAEs occurred. Across all patients enrolled, treatment with vibostolimab in combination with KEYTRUDA demonstrated an ORR of 29% (95% CI, 16-46) and median PFS was 5.4 months (95% CI, 2.1-8.2). The median DOR was not reached (range, 4 to 17+ months). Among patients whose tumors express PD-L1 (tumor proportion score [TPS] ≥1%) (n=13), the ORR was 46% (95% CI, 19-75) and median PFS was 8.4 months (95% CI, 3.9-10.2). Among patients whose tumors express PD-L1 (TPS <1%) (n=12), the ORR was 25% (95% CI, 6-57), and median PFS was 4.1 months (95% CI, 1.9-not reached [NR]). PD-L1 status was not available for 16 patients. Median follow-up for the study was 11 months (range, 7 to 18).

    Additional data from a separate cohort of the same Phase 1b trial evaluated vibostolimab as monotherapy (n=41) and in combination with KEYTRUDA (n=38) in patients with metastatic NSCLC whose disease progressed on prior anti-PD-1/PD-L1 therapy (Abstract #1400P). In the study, 78% of patients had received >2 lines of prior therapy. In the study, patients received vibostolimab monotherapy (200 or 210 mg) or vibostolimab (200 or 210 mg) in combination with KEYTRUDA (200 mg) on Day 1 of each three-week cycle for up to 35 cycles. The primary endpoints of the study were safety and tolerability. Secondary endpoints included ORR and DOR. Vibostolimab as monotherapy or in combination with KEYTRUDA had a manageable safety profile and demonstrated modest anti-tumor activity in patients whose disease was refractory to PD-1/PD-L1 inhibition, most of whom had previously received several lines of therapy for advanced disease prior to enrollment. Grade 3-5 TRAEs occurred in 15% of patients receiving vibostolimab monotherapy and 13% of patients receiving vibostolimab in combination with KEYTRUDA. The most common TRAEs (≥10% in either arm) were pruritus, fatigue, rash, arthralgia and decreased appetite. One patient died due to treatment-related pneumonitis in the vibostolimab and KEYTRUDA combination arm. The ORR was 7% (95% CI, 2-20) with vibostolimab monotherapy and 5% (95% CI, <1-18) with vibostolimab in combination with KEYTRUDA. The median DOR was 9 months (range, 9 to 9) with vibostolimab monotherapy and 13 months (range, 4+ to 13) with vibostolimab in combination with KEYTRUDA.

    Data from these cohort expansion studies are encouraging and support the continued development of vibostolimab, which is being evaluated alone and in combination with KEYTRUDA across multiple solid tumors, including NSCLC and melanoma. In the ongoing Phase 2 KEYNOTE-U01 umbrella study (NCT04165798), substudy KEYNOTE-01A (NCT04165070) is evaluating vibostolimab in combination with KEYTRUDA plus chemotherapy for the first-line treatment of patients with advanced NSCLC who had not received prior treatment with an anti-PD-1/PD-L1. Merck plans to initiate a Phase 3 study of vibostolimab in NSCLC in the first half of 2021. Ongoing trials in melanoma include the Phase 1/2 KEYNOTE-U02 umbrella study comprised of three substudies evaluating vibostolimab in combination with KEYTRUDA across treatment settings (substudy 02A: NCT04305041, substudy 02B: NCT04305054 and substudy 02C: NCT04303169).

    MK-4830 (Anti-ILT4 Therapy): Initial Results in Advanced Solid Tumors (Abstract #524O)

    In this first-in-human Phase 1, open-label, multi-arm, multi-center, dose escalation study (NCT03564691), MK-4830, Merck's first-in-class anti-ILT4 therapy, was evaluated as monotherapy (n=50) and in combination with KEYTRUDA (n=34) in patients with advanced solid tumors. The majority of patients enrolled in the study (51%) had received three or more prior lines of therapy. MK-4830 was administered intravenously at escalating doses every three weeks alone or in combination with KEYTRUDA (200 mg every three weeks). The primary endpoints of the dose escalation part of the study were safety and tolerability; Pharmacokinetics was a secondary endpoint, and exploratory objectives included ORR per RECIST v1.1, evaluation of receptor occupancy and immune correlates of response in blood and tumor.

    Findings showed that MK-4830 as monotherapy and in combination with KEYTRUDA had an acceptable safety profile and demonstrated dose-related evidence of target engagement in patients with advanced solid tumors. No dose-limiting toxicities were observed; the maximum-tolerated dose was not reached. Any-grade adverse events were consistent with those associated with KEYTRUDA. Treatment-related AEs occurred in 54% (n=28/52) of patients who received MK-4830 in combination with KEYTRUDA and 48% (n=24/50) of patients who received MK-4830 monotherapy; the majority were Grade 1 and 2. Preliminary efficacy data showed an ORR of 24% (n=8/34) in patients who received MK-4830 in combination with KEYTRUDA. All responses occurred in heavily pretreated patients, including five who had progressed on prior anti-PD-1 therapy (n=5/11). Some patients received more than one year of treatment, and treatment is ongoing in several patients.

    These early data support the continued development of MK-4830 in combination with KEYTRUDA in patients with advanced solid tumors. Expansion cohorts of this study include pancreatic adenocarcinoma, glioblastoma, head and neck squamous cell carcinoma (recurrent or metastatic; PD-L1 positive), advanced NSCLC and gastric cancer.

    MK-6482 (HIF-2α Inhibitor): Results in VHL-Associated RCC and Non-RCC Tumors (Abstract #LBA26)

    In this Phase 2, open-label, single-arm trial, MK-6482 was evaluated for the treatment of VHL-associated RCC (NCT03401788). New data include findings for MK-6482 in VHL patients with non-RCC tumors and updated data in VHL patients with RCC. First-time data in VHL-associated RCC were presented in the virtual scientific program of the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting. The study enrolled adult patients with a pathogenic germline VHL variation, measurable localized or non-metastatic RCC, no prior systemic anti-cancer therapy, and Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0 or 1. Patients received MK-6482 120 mg orally once daily until disease progression, unacceptable toxicity, or investigator's or patient's decision to withdraw. The primary endpoint was ORR of VHL-associated RCC tumors per RECIST v1.1 by independent radiology review. Secondary endpoints included DOR, time to response, PFS, efficacy in non-RCC tumors, and safety and tolerability.

    Promising clinical activity continues to be observed with MK-6482 in treatment-naïve patients with VHL-associated RCC. Among 61 patients, results showed a confirmed ORR of 36.1% (95% CI, 24.2-49.4); all responses were partial responses, and 38% of patients had stable disease. The median time to response was 31.1 weeks (range, 11.9 to 62.3), and median DOR was not yet reached (range, 11.9 to 62.3 weeks). Additionally, 91.8% (n=56) of patients had a decrease in size of target lesions. Median PFS has not been reached, and the PFS rate at 52 weeks was 98.3%. Median duration of treatment was 68.7 weeks (range, 18.3 to 104.7), and 91.8% of patients were still on therapy after a minimum follow-up of 60 weeks.

    In patients with non-RCC tumors, results in those with pancreatic lesions (n=61) showed a confirmed ORR of 63.9% (95% CI, 50.6-75.8), with four complete responses and 35 partial responses. Additionally, 34.4% had stable disease. In those with central nervous system (CNS) hemangioblastoma (n=43), results showed a confirmed ORR of 30.2% (95% CI, 17.2-46.1), with five complete responses and eight partial responses. Additionally, 65.1% had stable disease. In patients with retinal lesions (n=16), 93.8% of patients had improved or stable response.

    In this Phase 2 study, TRAEs occurred in 98.4% of patients, and there were no Grade 4-5 TRAEs. The most common all-cause adverse events (≥20%) were anemia (90.2%), fatigue (60.7%), headache (37.7%), dizziness (36.1%) and nausea (31.1%). Grade 3 all-cause adverse events included anemia (6.6%), fatigue (4.9%) and dyspnea (1.6%). One patient discontinued treatment due to a TRAE (Grade 1 dizziness).

    As announced, data spanning more than 15 types of cancer will be presented from Merck's broad oncology portfolio and investigational pipeline at the congress. A compendium of presentations and posters of Merck-led studies is available here. Follow Merck on Twitter via @Merck and keep up to date with ESMO news and updates by using the hashtag #ESMO20.

    About Vibostolimab

    Vibostolimab is an anti-TIGIT therapy discovered and developed by Merck. Vibostolimab binds to TIGIT and blocks the interaction between TIGIT and its ligands (CD112 and CD155), thereby activating T lymphocytes which help to destroy tumor cells. The effect of combining KEYTRUDA with vibostolimab – blocking both the TIGIT and PD-1 pathways simultaneously – is currently being evaluated across multiple solid tumors, including NSCLC and melanoma.

    About MK-4830

    MK-4830 is a novel antibody directed against the inhibitory immune checkpoint receptor immunoglobulin-like transcript 4 (ILT4). Unlike current T cell-targeted antibodies (e.g., anti-PD1, anti-CTLA-4), anti-ILT4 is believed to attenuate immunosuppression imposed by tolerogenic myeloid cells in the tumor microenvironment. MK-4830 is currently being evaluated alone and in combination with KEYTRUDA across multiple solid tumors as part of ongoing Phase 1 and 2 trials.

    About MK-6482

    MK-6482 is an investigational, novel, potent, selective, oral HIF-2α inhibitor that is currently being evaluated in a Phase 3 trial in advanced RCC (NCT04195750), a Phase 2 trial in VHL-associated RCC (NCT03401788), and a Phase 1/2 dose-escalation and dose-expansion trial in advanced solid tumors, including advanced RCC (NCT02974738). Proteins known as hypoxia-inducible factors, including HIF-2α, can accumulate in patients when VHL, a tumor-suppressor protein, is inactivated. The accumulation of HIF-2α can lead to the formation of both benign and malignant tumors. This inactivation of VHL has been observed in more than 90% of RCC tumors. Research into VHL biology that led to the discovery of HIF-2α was awarded the Nobel Prize in Physiology or Medicine in 2019.

    About KEYTRUDA® (pembrolizumab) Injection, 100 mg

    KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body's immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

    Merck has the industry's largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

    Selected KEYTRUDA® (pembrolizumab) Indications

    Melanoma

    KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

    KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

    Non-Small Cell Lung Cancer

    KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

    KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

    KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

    KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

    Small Cell Lung Cancer

    KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

    Head and Neck Squamous Cell Cancer

    KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

    KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

    KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

    Classical Hodgkin Lymphoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Primary Mediastinal Large B-Cell Lymphoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

    Urothelial Carcinoma

    KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) ≥10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

    KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

    KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

    Microsatellite Instability-High or Mismatch Repair Deficient Cancer

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

    • solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
    • colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.

    This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

    Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

    KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

    Gastric Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Esophageal Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

    Cervical Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Hepatocellular Carcinoma

    KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Merkel Cell Carcinoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Renal Cell Carcinoma

    KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

    Tumor Mutational Burden-High

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

    Cutaneous Squamous Cell Carcinoma

    KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

    Selected Important Safety Information for KEYTRUDA® (pembrolizumab)

    Immune-Mediated Pneumonitis

    KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

    Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

    Immune-Mediated Colitis

    KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

    Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

    Immune-Mediated Hepatitis

    KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

    Hepatotoxicity in Combination With Axitinib

    KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

    Immune-Mediated Endocrinopathies

    KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

    Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

    Immune-Mediated Nephritis and Renal Dysfunction

    KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

    Immune-Mediated Skin Reactions

    Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

    Other Immune-Mediated Adverse Reactions

    Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

    The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

    Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

    Infusion-Related Reactions

    KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

    Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

    Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

    In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

    Increased Mortality in Patients With Multiple Myeloma

    In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

    Embryofetal Toxicity

    Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

    Adverse Reactions

    In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

    In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (≥1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

    In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

    In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

    In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

    In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

    In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

    Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

    In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

    In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

    In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

    In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

    In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

    In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

    In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

    In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

    Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

    Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

    Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

    In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

    Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

    Adverse reactions occurring in patients with cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Lactation

    Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

    Pediatric Use

    There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

    Merck's Focus on Cancer

    Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

    About Merck

    For more than 125 years, Merck, known as MSD outside of the United States and Canada, has been inventing for life, bringing forward medicines and vaccines for many of the world's most challenging diseases in pursuit of our mission to save and improve lives. We demonstrate our commitment to patients and population health by increasing access to health care through far-reaching policies, programs and partnerships. Today, Merck continues to be at the forefront of research to prevent and treat diseases that threaten people and animals – including cancer, infectious diseases such as HIV and Ebola, and emerging animal diseases – as we aspire to be the premier research-intensive biopharmaceutical company in the world. For more information, visit www.merck.com and connect with us on Twitter, Facebook, Instagram, YouTube and LinkedIn.

    Forward-Looking Statement of Merck & Co., Inc., Kenilworth, N.J., USA

    This news release of Merck & Co., Inc., Kenilworth, N.J., USA (the "company") includes "forward-looking statements" within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company's management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

    Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of the global outbreak of novel coronavirus disease (COVID-19); the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company's ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company's patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

    The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company's 2019 Annual Report on Form 10-K and the company's other filings with the Securities and Exchange Commission (SEC) available at the SEC's Internet site (www.sec.gov).

    Please see Prescribing Information for KEYTRUDA at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf and

    Medication Guide for KEYTRUDA at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_mg.pdf.

    View Full Article Hide Full Article
  4. New Results Include Findings From the Phase 2 LEAP-004 Trial Showing an ORR of 21.4% in Patients With Unresectable or Advanced Melanoma Who Had Previously Progressed on an Anti-PD-1/PD-L1 Therapy

    Merck (NYSE:MRK), known as MSD outside the United States and Canada, and Eisai today announced new investigational data from two trials under the LEAP (LEnvatinib And Pembrolizumab) clinical program evaluating KEYTRUDA, Merck's anti-PD-1 therapy, plus LENVIMA, the orally available multiple receptor tyrosine kinase inhibitor discovered by Eisai. In the Phase 2 LEAP-004 trial, KEYTRUDA plus LENVIMA showed an objective response rate (ORR) of 21.4% (95% CI: 13.9-30.5) in patients with unresectable or advanced melanoma who had previously progressed on…

    New Results Include Findings From the Phase 2 LEAP-004 Trial Showing an ORR of 21.4% in Patients With Unresectable or Advanced Melanoma Who Had Previously Progressed on an Anti-PD-1/PD-L1 Therapy

    Merck (NYSE:MRK), known as MSD outside the United States and Canada, and Eisai today announced new investigational data from two trials under the LEAP (LEnvatinib And Pembrolizumab) clinical program evaluating KEYTRUDA, Merck's anti-PD-1 therapy, plus LENVIMA, the orally available multiple receptor tyrosine kinase inhibitor discovered by Eisai. In the Phase 2 LEAP-004 trial, KEYTRUDA plus LENVIMA showed an objective response rate (ORR) of 21.4% (95% CI: 13.9-30.5) in patients with unresectable or advanced melanoma who had previously progressed on an anti-PD-1/PD-L1 therapy. In the Phase 2 LEAP-005 trial, KEYTRUDA plus LENVIMA demonstrated an ORR that ranged from 9.7-32.3% (95% CI: 2.0-51.4) in previously treated patients with triple-negative breast cancer (TNBC), ovarian cancer, gastric cancer, colorectal cancer (non-microsatellite instability-high [non-MSI-H]/mismatch repair proficient [pMMR]), glioblastoma multiforme (GBM) and biliary tract cancer (BTC). Results from LEAP-004 (Abstract #LBA44) and LEAP-005 (Abstract #LBA41) were accepted as late-breaking abstracts and are being presented in proffered paper presentations at the European Society for Medical Oncology (ESMO) Virtual Congress 2020.

    This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200920005060/en/

    "These new data from our LEAP clinical program show encouraging activity across several aggressive cancer types and expand our knowledge about the potential of KEYTRUDA plus LENVIMA to help a range of patients with these cancers," said Dr. Scot Ebbinghaus, Vice President, Clinical Research, Merck Research Laboratories. "This is the first time that clinical data from two LEAP trials are being presented, reflecting important progress we are making to explore the potential of this combination for patients in need of new options, particularly those with advanced melanoma who have progressed on an anti-PD-1 or PD-L1 therapy."

    "We are encouraged by the growing body of research that we have seen to date, now in 13 different cancers, supporting the potential of the KEYTRUDA plus LENVIMA combination, which we're currently evaluating in 19 clinical trials," said Dr. Takashi Owa, Chief Medicine Creation and Chief Discovery Officer, Oncology Business Group at Eisai. "These data not only help advance our understanding of the regimen but also fuel our deep-seated determination to work to address the unmet needs of these patients."

    LEAP-004 Trial Design and Data (Abstract #LBA44)

    LEAP-004 (ClinicalTrials.gov, NCT03776136) is a Phase 2, single-arm, open-label trial evaluating KEYTRUDA in combination with LENVIMA in patients with unresectable or advanced melanoma who had progressed on an anti-PD-1/PD-L1 therapy within 12 weeks. Patients were treated with LENVIMA 20 mg orally once daily until unacceptable toxicity or disease progression in combination with KEYTRUDA 200 mg intravenously every three weeks until unacceptable toxicity or disease progression for up to 35 cycles (approximately two years). The primary endpoint is ORR per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 as assessed by blinded independent central review (BICR). Secondary endpoints include progression-free survival (PFS) and duration of response (DOR) per RECIST v1.1 by BICR, overall survival (OS) and safety.

    At data cutoff (June 10, 2020), a total of 103 patients were enrolled and treated. With a median duration of follow-up of 12 months (range: 8.7-15.6), KEYTRUDA plus LENVIMA demonstrated an overall ORR by BICR of 21.4% (n=22) (95% CI: 13.9-30.5), with a complete response rate of 1.9% (n=2) and a partial response rate of 19.4% (n=20). In the total study population, the median DOR was 6.3 months (range: 2.1+ to 11.1+), with 72.6% (95% CI: 46.2-87.6) of responses lasting for at least six months. Median PFS was 4.2 months (range: 3.5 to 6.3), with 73.8% of patients experiencing disease progression or death, and the nine-month PFS rate was 26.2% (95% CI: 17.4-35.9). Median OS was 13.9 months (range: 10.8-not reached [NR]), with death occurring in 44.7% of patients, and the nine-month OS rate was 65.4% (95% CI: 55.2-73.8).

    The exploratory analysis showed that specifically in the 29 patients whose disease progressed after an anti-PD-1/L1 therapy plus an anti-CTLA-4 therapy, the ORR by BICR was 31.0% (95% CI: 15.3-50.8), with a complete response rate of 3.4% (n=1) and a partial response rate of 27.6% (n=8), and the disease control rate (DCR) by BICR was 62.1% (95% CI: 42.3-79.3). In the total study population, the DCR by BICR was 65.0% (95% CI: 55.0-74.2).

    Treatment-related adverse events (TRAEs) led to discontinuation of KEYTRUDA and/or LENVIMA in 7.8% of patients. Grade 3-5 TRAEs occurred in 44.7% of patients (Grade 3: 39.8%; Grade 4: 3.9%; Grade 5: 1.0%), and serious TRAEs occurred in 18.4% of patients. The most common TRAEs of any grade occurring in at least 30% of the overall study population were hypertension (56.3%), diarrhea (35.9%), nausea (34.0%), hypothyroidism (33.0%) and decreased appetite (31.1%).

    LEAP-005 Trial Design and Data (Abstract #LBA41)

    LEAP-005 (ClinicalTrials.gov, NCT03797326) is a Phase 2, single-arm, open-label trial evaluating KEYTRUDA in combination with LENVIMA in patients with select previously treated advanced solid tumors. The study cohorts are TNBC, ovarian cancer, gastric cancer, colorectal cancer (non-MSI-H/pMMR), GBM and BTC. Patients were treated with LENVIMA 20 mg orally once daily until unacceptable toxicity or disease progression in combination with KEYTRUDA 200 mg intravenously every three weeks until unacceptable toxicity or disease progression for up to 35 cycles (approximately two years). The primary endpoints are ORR per RECIST v1.1 as assessed by BICR or Response Assessment in Neuro-Oncology (RANO) criteria (for GBM only) as assessed by BICR, and safety. Secondary endpoints include DCR per RECIST v1.1 by BICR or RANO (for GBM only) by BICR, DOR per RECIST v1.1 by BICR or RANO (for GBM only) by BICR, PFS per RECIST v1.1 by BICR or RANO (for GBM only) by BICR, and OS.

    At data cutoff (April 10, 2020), a total of 187 patients were enrolled and treated. The confirmed ORR after a median duration of follow-up of 8.6 months (range: 1.9-13.1) for the six different tumor types, as well as additional efficacy and safety results, showed:

     

    2L/3L TNBC

    (n=31)

    4L

    Ovarian

    (n=31)

    3L Gastric

    (n=31)

    3L Colorectal

    (n=32)

    2L

    BTC

    (n=31)

    2L

    GBM

    (n=31)

    ORR, %

    (95% CI)

    29.0 (14.2-48.0)

    32.3 (16.7-51.4)

    9.7 (2.0-25.8)

    21.9 (9.3-40.0)

    9.7 (2.0-25.8)

    16.1 (5.5-33.7)

    DCR, %

    (95% CI)

    58.1 (39.1-75.5)

    74.2 (55.4-88.1)

    48.4 (30.2-66.9)

    46.9 (29.1-65.3)

    67.7 (48.6-83.3)

    58.1 (39.1-75.5)

    DOR, median (range), months

    NR (0.0+ to 8.4+)

    NR (1.5+ to 7.9+)

    NR (2.1+ to 2.3+)

    NR (2.1+ to 10.4+)

    5.3 (2.1+ to 6.2)

    3.2 (2.5 to 4.9+)

    Grade ≥3 TRAEs, % (n)

    55 (17)

    68 (21)

    42 (13)

    50 (16)

    48 (15)

    35 (11)

    Death due to a TRAE, % (n)

    3 (1)

    3 (1)

    3 (1)

    3 (1)

    0 (0)

    3 (1)

    Discontinued due to a TRAE, % (n)

    10 (3)

    13 (4)

    6 (2)

    9 (3)

    6 (2)

    6 (2)

    +, no progressive disease (PD) as of last disease assessment; DCR, disease control rate (best confirmed response: complete/partial response; stable disease); DOR, duration of response; NR, not reached

    The most common TRAEs of any grade occurring in at least 20% of the overall study population were hypertension (39.0%), fatigue (29.4%), diarrhea (26.7%), decreased appetite (25.1%), hypothyroidism (27.8%) and nausea (21.9%). The study is ongoing and will be expanded to enroll approximately 100 patients in each cohort.

    About KEYTRUDA® (pembrolizumab) Injection, 100 mg

    KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body's immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

    Merck has the industry's largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

    Selected KEYTRUDA® (pembrolizumab) Indications

    Melanoma

    KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

    KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

    Non-Small Cell Lung Cancer

    KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

    KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

    KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

    KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

    Small Cell Lung Cancer

    KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

    Head and Neck Squamous Cell Cancer

    KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

    KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

    KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

    Classical Hodgkin Lymphoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Primary Mediastinal Large B-Cell Lymphoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

    Urothelial Carcinoma

    KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) ≥10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

    KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

    KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

    Microsatellite Instability-High or Mismatch Repair Deficient Cancer

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

    • solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
    • colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.

    This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

    Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

    KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

    Gastric Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Esophageal Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

    Cervical Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Hepatocellular Carcinoma

    KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Merkel Cell Carcinoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Renal Cell Carcinoma

    KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

    Endometrial Carcinoma

    KEYTRUDA, in combination with LENVIMA, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial.

    Tumor Mutational Burden-High

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

    Cutaneous Squamous Cell Carcinoma

    KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

    Selected Important Safety Information for KEYTRUDA® (pembrolizumab)

    Immune-Mediated Pneumonitis

    KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

    Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

    Immune-Mediated Colitis

    KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

    Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

    Immune-Mediated Hepatitis

    KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

    Hepatotoxicity in Combination With Axitinib

    KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

    Immune-Mediated Endocrinopathies

    KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

    Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

    Immune-Mediated Nephritis and Renal Dysfunction

    KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

    Immune-Mediated Skin Reactions

    Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

    Other Immune-Mediated Adverse Reactions

    Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

    The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

    Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

    Infusion-Related Reactions

    KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

    Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

    Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

    In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

    Increased Mortality in Patients With Multiple Myeloma

    In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

    Embryofetal Toxicity

    Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

    Adverse Reactions

    In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

    In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (≥1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

    In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

    In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

    In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

    In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

    In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

    Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

    In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

    In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

    In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

    In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

    In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

    In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

    In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

    In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

    Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

    Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

    Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

    In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

    In KEYNOTE-146, when KEYTRUDA was administered in combination with LENVIMA to patients with endometrial carcinoma (n=94), fatal adverse reactions occurred in 3% of patients. Serious adverse reactions occurred in 52% of patients, the most common (≥3%) were hypertension (9%), abdominal pain (6%), musculoskeletal pain (5%), hemorrhage, fatigue, nausea, confusional state, and pleural effusion (4% each), adrenal insufficiency, colitis, dyspnea, and pyrexia (3% each).

    KEYTRUDA was discontinued for adverse reactions (Grade 1-4) in 19% of patients, regardless of action taken with LENVIMA; the most common (≥2%) leading to discontinuation of KEYTRUDA were adrenal insufficiency, colitis, pancreatitis, and muscular weakness (2% each).

    The most common adverse reactions (≥20%) observed with KEYTRUDA in combination with LENVIMA were fatigue, musculoskeletal pain and hypertension (65% each), diarrhea (64%), decreased appetite (52%), hypothyroidism (51%), nausea (48%), stomatitis (43%), vomiting (39%), decreased weight (36%), abdominal pain and headache (33% each), constipation (32%), urinary tract infection (31%), dysphonia (29%), hemorrhagic events (28%), hypomagnesemia (27%), palmar-plantar erythrodysesthesia syndrome (26%), dyspnea (24%), and cough and rash (21% each).

    Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

    Adverse reactions occurring in patients with cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Lactation

    Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

    Pediatric Use

    There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

    Please see Prescribing Information for KEYTRUDA (pembrolizumab) at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf and Medication Guide for KEYTRUDA at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_mg.pdf.

    About LENVIMA® (lenvatinib)

    LENVIMA® (lenvatinib) is a kinase inhibitor that is indicated:

    • For the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer (RAI-refractory DTC)
    • In combination with everolimus, for the treatment of patients with advanced renal cell carcinoma (RCC) following one prior anti-angiogenic therapy
    • For the first-line treatment of patients with unresectable hepatocellular carcinoma (HCC)
    • In combination with KEYTRUDA, for the treatment of patients with advanced endometrial carcinoma that is not microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR), who have disease progression following prior systemic therapy, and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial

    LENVIMA, discovered and developed by Eisai, is a kinase inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). LENVIMA inhibits other kinases that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1-4, the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. In syngeneic mouse tumor models, lenvatinib decreased tumor-associated macrophages, increased activated cytotoxic T cells, and demonstrated greater antitumor activity in combination with an anti-PD-1 monoclonal antibody compared to either treatment alone.

    Selected Safety Information

    Warnings and Precautions

    Hypertension. In DTC, hypertension occurred in 73% of patients on LENVIMA (44% grade 3-4). In RCC, hypertension occurred in 42% of patients on LENVIMA + everolimus (13% grade 3). Systolic blood pressure ≥160 mmHg occurred in 29% of patients, and 21% had diastolic blood pressure ≥100 mmHg. In HCC, hypertension occurred in 45% of LENVIMA-treated patients (24% grade 3). Grade 4 hypertension was not reported in HCC.

    Serious complications of poorly controlled hypertension have been reported. Control blood pressure prior to initiation. Monitor blood pressure after 1 week, then every 2 weeks for the first 2 months, and then at least monthly thereafter during treatment. Withhold and resume at reduced dose when hypertension is controlled or permanently discontinue based on severity.

    Cardiac Dysfunction. Serious and fatal cardiac dysfunction can occur with LENVIMA. Across clinical trials in 799 patients with DTC, RCC, and HCC, grade 3 or higher cardiac dysfunction occurred in 3% of LENVIMA treated patients. Monitor for clinical symptoms or signs of cardiac dysfunction. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

    Arterial Thromboembolic Events. Among patients receiving LENVIMA or LENVIMA + everolimus, arterial thromboembolic events of any severity occurred in 2% of patients in RCC and HCC and 5% in DTC. Grade 3-5 arterial thromboembolic events ranged from 2% to 3% across all clinical trials. Permanently discontinue following an arterial thrombotic event. The safety of resuming after an arterial thromboembolic event has not been established and LENVIMA has not been studied in patients who have had an arterial thromboembolic event within the previous 6 months.

    Hepatotoxicity. Across clinical studies enrolling 1,327 LENVIMA-treated patients with malignancies other than HCC, serious hepatic adverse reactions occurred in 1.4% of patients. Fatal events, including hepatic failure, acute hepatitis and hepatorenal syndrome, occurred in 0.5% of patients. In HCC, hepatic encephalopathy occurred in 8% of LENVIMA-treated patients (5% grade 3-5). Grade 3-5 hepatic failure occurred in 3% of LENVIMA-treated patients. 2% of patients discontinued LENVIMA due to hepatic encephalopathy and 1% discontinued due to hepatic failure.

    Monitor liver function prior to initiation, then every 2 weeks for the first 2 months, and at least monthly thereafter during treatment. Monitor patients with HCC closely for signs of hepatic failure, including hepatic encephalopathy. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

    Renal Failure or Impairment. Serious including fatal renal failure or impairment can occur with LENVIMA. Renal impairment was reported in 14% and 7% of LENVIMA-treated patients in DTC and HCC, respectively. Grade 3-5 renal failure or impairment occurred in 3% of patients with DTC and 2% of patients with HCC, including 1 fatal event in each study. In RCC, renal impairment or renal failure was reported in 18% of LENVIMA + everolimus–treated patients (10% grade 3).

    Initiate prompt management of diarrhea or dehydration/hypovolemia. Withhold and resume at reduced dose upon recovery or permanently discontinue for renal failure or impairment based on severity.

    Proteinuria. In DTC and HCC, proteinuria was reported in 34% and 26% of LENVIMA-treated patients, respectively. Grade 3 proteinuria occurred in 11% and 6% in DTC and HCC, respectively. In RCC, proteinuria occurred in 31% of patients receiving LENVIMA + everolimus (8% grade 3). Monitor for proteinuria prior to initiation and periodically during treatment. If urine dipstick proteinuria ≥2+ is detected, obtain a 24-hour urine protein. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

    Diarrhea. Of the 737 LENVIMA-treated patients in DTC and HCC, diarrhea occurred in 49% (6% grade 3). In RCC, diarrhea occurred in 81% of LENVIMA + everolimus–treated patients (19% grade 3). Diarrhea was the most frequent cause of dose interruption/reduction, and diarrhea recurred despite dose reduction. Promptly initiate management of diarrhea. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

    Fistula Formation and Gastrointestinal Perforation. Of the 799 patients treated with LENVIMA or LENVIMA + everolimus in DTC, RCC, and HCC, fistula or gastrointestinal perforation occurred in 2%. Permanently discontinue in patients who develop gastrointestinal perforation of any severity or grade 3-4 fistula.

    QT Interval Prolongation. In DTC, QT/QTc interval prolongation occurred in 9% of LENVIMA-treated patients and QT interval prolongation of >500 ms occurred in 2%. In RCC, QTc interval increases of >60 ms occurred in 11% of patients receiving LENVIMA + everolimus and QTc interval >500 ms occurred in 6%. In HCC, QTc interval increases of >60 ms occurred in 8% of LENVIMA-treated patients and QTc interval >500 ms occurred in 2%.

    Monitor and correct electrolyte abnormalities at baseline and periodically during treatment. Monitor electrocardiograms in patients with congenital long QT syndrome, congestive heart failure, bradyarrhythmias, or those who are taking drugs known to prolong the QT interval, including Class Ia and III antiarrhythmics. Withhold and resume at reduced dose upon recovery based on severity.

    Hypocalcemia. In DTC, grade 3-4 hypocalcemia occurred in 9% of LENVIMA-treated patients. In 65% of cases, hypocalcemia improved or resolved following calcium supplementation with or without dose interruption or dose reduction. In RCC, grade 3-4 hypocalcemia occurred in 6% of LENVIMA + everolimus– treated patients. In HCC, grade 3 hypocalcemia occurred in 0.8% of LENVIMA-treated patients. Monitor blood calcium levels at least monthly and replace calcium as necessary during treatment. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity.

    Reversible Posterior Leukoencephalopathy Syndrome. Across clinical studies of 1,823 patients who received LENVIMA as a single agent, RPLS occurred in 0.3%. Confirm diagnosis of RPLS with MRI. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity and persistence of neurologic symptoms.

    Hemorrhagic Events. Serious including fatal hemorrhagic events can occur with LENVIMA. In DTC, RCC, and HCC clinical trials, hemorrhagic events, of any grade, occurred in 29% of the 799 patients treated with LENVIMA as a single agent or in combination with everolimus. The most frequently reported hemorrhagic events (all grades and occurring in at least 5% of patients) were epistaxis and hematuria. In DTC, grade 3-5 hemorrhage occurred in 2% of LENVIMA-treated patients, including 1 fatal intracranial hemorrhage among 16 patients who received LENVIMA and had CNS metastases at baseline. In RCC, grade 3-5 hemorrhage occurred in 8% of LENVIMA + everolimus–treated patients, including 1 fatal cerebral hemorrhage. In HCC, grade 3-5 hemorrhage occurred in 5% of LENVIMA-treated patients, including 7 fatal hemorrhagic events. Serious tumor-related bleeds, including fatal hemorrhagic events, occurred in LENVIMA-treated patients in clinical trials and in the postmarketing setting. In postmarketing surveillance, serious and fatal carotid artery hemorrhages were seen more frequently in patients with anaplastic thyroid carcinoma (ATC) than other tumors. Safety and effectiveness of LENVIMA in patients with ATC have not been demonstrated in clinical trials.

    Consider the risk of severe or fatal hemorrhage associated with tumor invasion or infiltration of major blood vessels (e.g., carotid artery). Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

    Impairment of Thyroid Stimulating Hormone Suppression/Thyroid Dysfunction. LENVIMA impairs exogenous thyroid suppression. In DTC, 88% of patients had baseline thyroid stimulating hormone (TSH) level ≤0.5 mU/L. In patients with normal TSH at baseline, elevation of TSH level >0.5 mU/L was observed post baseline in 57% of LENVIMA-treated patients. In RCC and HCC, grade 1 or 2 hypothyroidism occurred in 24% of LENVIMA + everolimus–treated patients and 21% of LENVIMA-treated patients, respectively. In patients with normal or low TSH at baseline, elevation of TSH was observed post baseline in 70% of LENVIMA-treated patients in HCC and 60% of LENVIMA + everolimus–treated patients in RCC.

    Monitor thyroid function prior to initiation and at least monthly during treatment. Treat hypothyroidism according to standard medical practice.

    Impaired Wound Healing. Impaired wound healing has been reported in patients who received LENVIMA. Withhold LENVIMA for at least 1 week prior to elective surgery. Do not administer for at least 2 weeks following major surgery and until adequate wound healing. The safety of resumption of LENVIMA after resolution of wound healing complications has not been established.

    Embryo-fetal Toxicity. Based on its mechanism of action and data from animal reproduction studies, LENVIMA can cause fetal harm when administered to pregnant women. In animal reproduction studies, oral administration of lenvatinib during organogenesis at doses below the recommended clinical doses resulted in embryotoxicity, fetotoxicity, and teratogenicity in rats and rabbits. Advise pregnant women of the potential risk to a fetus; and advise females of reproductive potential to use effective contraception during treatment with LENVIMA and for at least 30 days after the last dose.

    Adverse Reactions

    In DTC, the most common adverse reactions (≥30%) observed in LENVIMA-treated patients were hypertension (73%), fatigue (67%), diarrhea (67%), arthralgia/myalgia (62%), decreased appetite (54%), decreased weight (51%), nausea (47%), stomatitis (41%), headache (38%), vomiting (36%), proteinuria (34%), palmar-plantar erythrodysesthesia syndrome (32%), abdominal pain (31%), and dysphonia (31%). The most common serious adverse reactions (≥2%) were pneumonia (4%), hypertension (3%), and dehydration (3%). Adverse reactions led to dose reductions in 68% of LENVIMA-treated patients; 18% discontinued LENVIMA. The most common adverse reactions (≥10%) resulting in dose reductions were hypertension (13%), proteinuria (11%), decreased appetite (10%), and diarrhea (10%); the most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were hypertension (1%) and asthenia (1%).

    In RCC, the most common adverse reactions (≥30%) observed in LENVIMA + everolimus–treated patients were diarrhea (81%), fatigue (73%), arthralgia/myalgia (55%), decreased appetite (53%), vomiting (48%), nausea (45%), stomatitis (44%), hypertension (42%), peripheral edema (42%), cough (37%), abdominal pain (37%), dyspnea (35%), rash (35%), decreased weight (34%), hemorrhagic events (32%), and proteinuria (31%). The most common serious adverse reactions (≥5%) were renal failure (11%), dehydration (10%), anemia (6%), thrombocytopenia (5%), diarrhea (5%), vomiting (5%), and dyspnea (5%). Adverse reactions led to dose reductions or interruption in 89% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were diarrhea (21%), fatigue (8%), thrombocytopenia (6%), vomiting (6%), nausea (5%), and proteinuria (5%). Treatment discontinuation due to an adverse reaction occurred in 29% of patients.

    In HCC, the most common adverse reactions (≥20%) observed in LENVIMA-treated patients were hypertension (45%), fatigue (44%), diarrhea (39%), decreased appetite (34%), arthralgia/myalgia (31%), decreased weight (31%), abdominal pain (30%), palmar-plantar erythrodysesthesia syndrome (27%), proteinuria (26%), dysphonia (24%), hemorrhagic events (23%), hypothyroidism (21%), and nausea (20%). The most common serious adverse reactions (≥2%) were hepatic encephalopathy (5%), hepatic failure (3%), ascites (3%), and decreased appetite (2%). Adverse reactions led to dose reductions or interruption in 62% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were fatigue (9%), decreased appetite (8%), diarrhea (8%), proteinuria (7%), hypertension (6%), and palmar-plantar erythrodysesthesia syndrome (5%). Treatment discontinuation due to an adverse reaction occurred in 20% of patients. The most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were fatigue (1%), hepatic encephalopathy (2%), hyperbilirubinemia (1%), and hepatic failure (1%).

    In EC, the most common adverse reactions (≥20%) observed in LENVIMA + pembrolizumab - treated patients were fatigue (65%), hypertension (65%), musculoskeletal pain (65%), diarrhea (64%), decreased appetite (52%), hypothyroidism (51%), nausea (48%), stomatitis (43%), vomiting (39%), decreased weight (36%), abdominal pain (33%), headache (33%), constipation (32%), urinary tract infection (31%), dysphonia (29%), hemorrhagic events (28%), hypomagnesemia (27%), palmar-plantar erythrodysesthesia (26%), dyspnea (24%), cough (21%) and rash (21%).

    Adverse reactions led to dose reduction or interruption in 88% of patients receiving LENVIMA. The most common adverse reactions (≥5%) resulting in dose reduction or interruption of LENVIMA were fatigue (32%), hypertension (26%), diarrhea (18%), nausea (13%), palmar-plantar erythrodysesthesia (13%), vomiting (13%), decreased appetite (12%), musculoskeletal pain (11%), stomatitis (9%), abdominal pain (7%), hemorrhages (7%), renal impairment (6%), decreased weight (6%), rash (5%), headache (5%), increased lipase (5%) and proteinuria (5%).

    Fatal adverse reactions occurred in 3% of patients receiving LENVIMA + pembrolizumab, including gastrointestinal perforation, RPLS with intraventricular hemorrhage, and intracranial hemorrhage.

    Serious adverse reactions occurred in 52% of patients receiving LENVIMA + pembrolizumab. Serious adverse reactions in ≥3% of patients were hypertension (9%), abdominal pain (6%), musculoskeletal pain (5%), hemorrhage (4%), fatigue (4%), nausea (4%), confusional state (4%), pleural effusion (4%), adrenal insufficiency (3%), colitis (3%), dyspnea (3%), and pyrexia (3%).

    Permanent discontinuation due to adverse reaction (Grade 1-4) occurred in 21% of patients who received LENVIMA + pembrolizumab. The most common adverse reactions (>2%) resulting in discontinuation of LENVIMA were gastrointestinal perforation or fistula (2%), muscular weakness (2%), and pancreatitis (2%).

    Use in Specific Populations

    Because of the potential for serious adverse reactions in breastfed infants, advise women to discontinue breastfeeding during treatment and for at least 1 week after last dose. LENVIMA may impair fertility in males and females of reproductive potential.

    No dose adjustment is recommended for patients with mild (CLcr 60-89 mL/min) or moderate (CLcr 30-59 mL/min) renal impairment. LENVIMA concentrations may increase in patients with DTC, RCC or EC and severe (CLcr 15-29 mL/min) renal impairment. Reduce the dose for patients with DTC, RCC, or EC and severe renal impairment. There is no recommended dose for patients with HCC and severe renal impairment. LENVIMA has not been studied in patients with end stage renal disease. No dose adjustment is recommended for patients with HCC and mild hepatic impairment (Child-Pugh A). There is no recommended dose for patients with HCC with moderate (Child-Pugh B) or severe (Child-Pugh C) hepatic impairment.

    No dose adjustment is recommended for patients with DTC, RCC, or EC and mild or moderate hepatic impairment. LENVIMA concentrations may increase in patients with DTC, RCC, or EC and severe hepatic impairment. Reduce the dose for patients with DTC, RCC, or EC and severe hepatic impairment.

    LENVIMA (lenvatinib) is available as 10 mg and 4 mg capsules.

    Please see Prescribing Information for LENVIMA (lenvatinib) at http://www.lenvima.com/pdfs/prescribing-information.pdf.

    About the Eisai and Merck Strategic Collaboration

    In March 2018, Eisai and Merck, known as MSD outside the United States and Canada, through an affiliate, entered into a strategic collaboration for the worldwide co-development and co-commercialization of LENVIMA. Under the agreement, the companies will jointly develop, manufacture and commercialize LENVIMA, both as monotherapy and in combination with Merck's anti-PD-1 therapy KEYTRUDA.

    In addition to ongoing clinical studies evaluating the KEYTRUDA plus LENVIMA combination across several different tumor types, the companies have jointly initiated new clinical studies through the LEAP (LEnvatinib And Pembrolizumab) clinical program and are evaluating the combination in 13 different tumor types (endometrial carcinoma, hepatocellular carcinoma, melanoma, non-small cell lung cancer, renal cell carcinoma, squamous cell carcinoma of the head and neck, urothelial cancer, biliary tract cancer, colorectal cancer, gastric cancer, glioblastoma, ovarian cancer and triple-negative breast cancer) across 19 clinical trials.

    Merck's Focus on Cancer

    Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

    About Merck

    For more than 125 years, Merck, known as MSD outside of the United States and Canada, has been inventing for life, bringing forward medicines and vaccines for many of the world's most challenging diseases in pursuit of our mission to save and improve lives. We demonstrate our commitment to patients and population health by increasing access to health care through far-reaching policies, programs and partnerships. Today, Merck continues to be at the forefront of research to prevent and treat diseases that threaten people and animals – including cancer, infectious diseases such as HIV and Ebola, and emerging animal diseases – as we aspire to be the premier research-intensive biopharmaceutical company in the world. For more information, visit www.merck.com and connect with us on Twitter, Facebook, Instagram, YouTube and LinkedIn.

    Eisai's Focus on Cancer

    Eisai focuses on the development of anticancer drugs, targeting the tumor microenvironment (with experience and knowledge from existing in-house discovered compounds) and the driver gene mutation and aberrant splicing (leveraging RNA Splicing Platform) as areas (Ricchi) where real patient needs are still unmet, and where Eisai can aim to become a frontrunner in oncology. Eisai aspires to discover innovative new drugs with new targets and mechanisms of action from these Ricchi, with the aim of contributing to the cure of cancers.

    About Eisai

    Eisai is a leading global research and development-based pharmaceutical company headquartered in Japan, with approximately 10,000 employees worldwide. We define our corporate mission as "giving first thought to patients and their families and to increasing the benefits health care provides," which we call our human health care (hhc) philosophy. We strive to realize our hhc philosophy by delivering innovative products in therapeutic areas with high unmet medical needs, including Oncology and Neurology. In the spirit of hhc, we take that commitment even further by applying our scientific expertise, clinical capabilities and patient insights to discover and develop innovative solutions that help address society's toughest unmet needs, including neglected tropical diseases and the Sustainable Development Goals.

    For more information about Eisai, please visit www.eisai.com (for global), us.eisai.com (for U.S.) or www.eisai.eu (for Europe, Middle East, Africa), and connect with us on Twitter (U.S. and global) and LinkedIn (for U.S.).

    Forward-Looking Statement of Merck & Co., Inc., Kenilworth, N.J., USA

    This news release of Merck & Co., Inc., Kenilworth, N.J., USA (the "company") includes "forward-looking statements" within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company's management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

    Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of the global outbreak of novel coronavirus disease (COVID-19); the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company's ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company's patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

    The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company's 2019 Annual Report on Form 10-K and the company's other filings with the Securities and Exchange Commission (SEC) available at the SEC's Internet site (www.sec.gov).

    View Full Article Hide Full Article
  5. Long-Term Findings From EORTC1325/KEYNOTE-054 Show Adjuvant KEYTRUDA Demonstrated a Sustained Recurrence-Free Survival Benefit Versus Placebo Across Stage IIIA (&gt;1 mm Lymph Node Metastasis), IIIB and IIIC Melanoma

    Merck Is Advancing a Broad Clinical Program Evaluating KEYTRUDA for the Early Treatment of Cancer

    Merck (NYSE:MRK), known as MSD outside the United States and Canada, and the European Organisation for Research and Treatment of Cancer (EORTC) today announced new and updated findings from the Phase 3 EORTC1325/KEYNOTE-054 trial evaluating KEYTRUDA, Merck's anti-PD-1 therapy, as adjuvant therapy in resected, high-risk stage III melanoma. Late-breaking, first-time study results showed that with 3.5 years of follow-up, adjuvant KEYTRUDA…

    Long-Term Findings From EORTC1325/KEYNOTE-054 Show Adjuvant KEYTRUDA Demonstrated a Sustained Recurrence-Free Survival Benefit Versus Placebo Across Stage IIIA (>1 mm Lymph Node Metastasis), IIIB and IIIC Melanoma

    Merck Is Advancing a Broad Clinical Program Evaluating KEYTRUDA for the Early Treatment of Cancer

    Merck (NYSE:MRK), known as MSD outside the United States and Canada, and the European Organisation for Research and Treatment of Cancer (EORTC) today announced new and updated findings from the Phase 3 EORTC1325/KEYNOTE-054 trial evaluating KEYTRUDA, Merck's anti-PD-1 therapy, as adjuvant therapy in resected, high-risk stage III melanoma. Late-breaking, first-time study results showed that with 3.5 years of follow-up, adjuvant KEYTRUDA met the key secondary endpoint of distant metastasis-free survival (DMFS), reducing the risk of distant metastasis or death by 40% versus placebo (HR=0.60 [95% CI, 0.49-0.73]; p<0.001), with 3.5-year DMFS rates of 65.3% and 49.4%, respectively. In addition, KEYTRUDA demonstrated a sustained recurrence-free survival (RFS) benefit versus placebo across stage IIIA (>1 mm lymph node metastasis), IIIB and IIIC melanoma, with 3.5-year RFS rates of 59.8% for KEYTRUDA versus 41.4% for placebo (HR = 0.59 [95% CI, 0.49-0.70]; p<0.001). The RFS and DMFS benefits were observed across key subgroups, including disease stages (both according to AJCC-7 and AJCC-8), BRAF mutation status and PD-L1 expression.

    This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200919005015/en/

    "Despite surgical intervention, patients diagnosed with high-risk stage III melanoma can experience disease recurrence, and for those with distant metastasis, they often face a significantly worse prognosis," said Alexander Eggermont, study chair, Chief Scientific Officer Princess Máxima Center, Utrecht, Netherlands. "These new and updated data, including first-time results for distant metastasis-free survival are significant, showing that adjuvant KEYTRUDA not only delayed recurrence but also delayed distant metastasis, further reinforcing the benefits of KEYTRUDA for these patients with stage III melanoma."

    "In KEYNOTE-054, adjuvant treatment with KEYTRUDA also continued to demonstrate long-term improvements in the prevention of new disease compared to placebo, with nearly 60% of patients alive and recurrence-free after 3.5 years," said Dr. Scot Ebbinghaus, vice president, clinical research, Merck Research Laboratories. "Taken together with the new distant metastasis-free survival results shown in this trial, these data point to the important role KEYTRUDA plays in melanoma in the adjuvant setting and are encouraging for the evaluation of KEYTRUDA in earlier disease states in other tumor types."

    These late-breaking data were presented as a proffered paper at the European Society for Medical Oncology (ESMO) Virtual Congress 2020 on Saturday, Sept. 19 (Abstract #LBA46). As announced, data spanning more than 15 types of cancer will be presented from Merck's broad oncology portfolio and investigational pipeline at the congress. A compendium of presentations and posters of Merck-led studies is available here. Follow Merck on Twitter via @Merck and keep up to date with ESMO news and updates by using the hashtag #ESMO20.

    KEYTRUDA is currently approved for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection in more than 70 countries based on the results from EORTC1325/KEYNOTE-054. Merck's broad clinical development program in melanoma and skin cancers is addressing areas of unmet need by investigating KEYTRUDA in earlier stages of disease and in combination with other anti-cancer therapies across multiple potential registration-enabling studies, including KEYNOTE-716, LEAP-003 and LEAP-004.

    EORTC1325/KEYNOTE-054 Trial Design and Additional Subgroup Data (Abstract #LBA8)

    EORTC1325/KEYNOTE-054 (ClinicalTrials.gov, NCT02362594) is a Phase 3, randomized, double-blind study sponsored by Merck and conducted in collaboration with the EORTC designed to evaluate adjuvant therapy with KEYTRUDA versus placebo in patients with resected, high-risk melanoma (stage IIIA [>1 mm lymph node metastasis], IIIB and IIIC). The co-primary endpoints are RFS for all patients and RFS in patients whose tumors expressed PD-L1. Secondary endpoints include DMFS and overall survival (OS) in all patients and in patients whose tumors expressed PD-L1. Data from a three-year analysis of RFS were presented in the virtual scientific program of the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting. In accordance with the trial protocol, the study is continuing in order to evaluate the secondary endpoint of OS; however, upon documented recurrence, patients were eligible for crossover/re-challenge with KEYTRUDA.

    Key Subgroup Analysis Results From EORTC1325/KEYNOTE-054

     

    3.5-Year DMFS Rate, %

    DMFS, HR

    P-Value (Log Rank)*

    PD-L1 Positive (n=853)

    KEYTRUDA

    66.7%

     

    0.61 (95% CI, 0.49-0.76)

     

    <0.001

    Placebo

    51.6%

     

     

    PD-L1 Negative (n=116)

    KEYTRUDA

    58.0%

     

    0.49 (99% CI, 0.24-0.99)

     

    0.008

    Placebo

    40.2%

     

     

    With BRAF V600 E/K Mutation (n=440)

    KEYTRUDA

    63.7%

     

    0.53 (99% CI, 0.36-0.77)

     

    <0.001

    Placebo

    43.4%

     

     

    Without BRAF Mutation (n=449)

    KEYTRUDA

    62.1%

     

    0.73 (99% CI, 0.50-1.07)

     

    0.035

    Placebo

    51.4%

     

     

    *Stratified by stage given at randomization

    In addition, the DMFS benefit demonstrated with KEYTRUDA was similar in patients with AJCC-7 stage IIIA (HR=0.64), IIIB (HR=0.58) and IIIC (HR=0.61) melanoma. Adjuvant KEYTRUDA decreased the incidence of distant metastasis as a first recurrence by 43% (at 3.5 years: 24.9% versus 39.5%, HR= 0.57 [95% CI, 0.46-0.72]; p<0.001).

    No new safety data were identified as part of the 42-month analysis. The safety profile of KEYTRUDA was consistent with what has been seen in previously reported studies among patients with advanced melanoma. Grade 3-5 immune-related adverse events occurred in 7.7% of patients who received KEYTRUDA and 0.6% of patients who received placebo.

    About EORTC

    European Organisation for the Research and Treatment of Cancer (EORTC) is an academic clinical research organization, bringing together investigators from all disciplines, across all tumour types, to conduct research that improves quality of life and survival of cancer patients. It conducts research from translational to large, prospective, multi-centre, phase III clinical trials evaluating new therapies and treatment strategies as well as quality of life of patients. EORTC network comprises more than 5300 professionals in over 1000 hospitals and institutes in more than 30 countries, supported by Headquarters in Brussels, Belgium.

    About Melanoma

    Melanoma, the most serious form of skin cancer, is characterized by the uncontrolled growth of pigment-producing cells. The incidence of melanoma has been increasing over the past few decades – approximately 287,000 new cases were diagnosed worldwide in 2018. In the U.S., melanoma is one of the most common types of cancer diagnosed and is responsible for the vast majority of skin cancer deaths. In 2020, more than 100,000 people are expected to be diagnosed, and nearly 7,000 people are expected to die of the disease in the U.S. alone.

    About KEYTRUDA® (pembrolizumab) Injection, 100 mg

    KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body's immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

    Merck has the industry's largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

    Selected KEYTRUDA® (pembrolizumab) Indications

    Melanoma

    KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

    KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

    Non-Small Cell Lung Cancer

    KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

    KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

    KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

    KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

    Small Cell Lung Cancer

    KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

    Head and Neck Squamous Cell Cancer

    KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

    KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

    KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

    Classical Hodgkin Lymphoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Primary Mediastinal Large B-Cell Lymphoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

    Urothelial Carcinoma

    KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) ≥10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

    KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

    KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

    Microsatellite Instability-High or Mismatch Repair Deficient Cancer

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

    • solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
    • colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.

    This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

    Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

    KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

    Gastric Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Esophageal Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

    Cervical Cancer

    KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Hepatocellular Carcinoma

    KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Merkel Cell Carcinoma

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

    Renal Cell Carcinoma

    KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

    Tumor Mutational Burden-High

    KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

    Cutaneous Squamous Cell Carcinoma

    KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

    Selected Important Safety Information for KEYTRUDA® (pembrolizumab)

    Immune-Mediated Pneumonitis

    KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

    Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

    Immune-Mediated Colitis

    KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

    Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

    Immune-Mediated Hepatitis

    KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

    Hepatotoxicity in Combination With Axitinib

    KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

    Immune-Mediated Endocrinopathies

    KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

    Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

    Immune-Mediated Nephritis and Renal Dysfunction

    KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

    Immune-Mediated Skin Reactions

    Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

    Other Immune-Mediated Adverse Reactions

    Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

    The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

    Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

    Infusion-Related Reactions

    KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

    Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

    Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

    In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

    Increased Mortality in Patients With Multiple Myeloma

    In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

    Embryofetal Toxicity

    Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

    Adverse Reactions

    In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

    In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (≥1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

    In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

    In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

    In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

    In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

    In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

    Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

    In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

    In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

    In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

    In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

    In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

    In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

    In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

    In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

    Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

    Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

    Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

    In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

    Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

    Adverse reactions occurring in patients with cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

    Lactation

    Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

    Pediatric Use

    There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

    Merck's Focus on Cancer

    Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

    About Merck

    For more than 125 years, Merck, known as MSD outside of the United States and Canada, has been inventing for life, bringing forward medicines and vaccines for many of the world's most challenging diseases in pursuit of our mission to save and improve lives. We demonstrate our commitment to patients and population health by increasing access to health care through far-reaching policies, programs and partnerships. Today, Merck continues to be at the forefront of research to prevent and treat diseases that threaten people and animals – including cancer, infectious diseases such as HIV and Ebola, and emerging animal diseases – as we aspire to be the premier research-intensive biopharmaceutical company in the world. For more information, visit www.merck.com and connect with us on Twitter, Facebook, Instagram, YouTube and LinkedIn.

    Forward-Looking Statement of Merck & Co., Inc., Kenilworth, N.J., USA

    This news release of Merck & Co., Inc., Kenilworth, N.J., USA (the "company") includes "forward-looking statements" within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company's management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

    Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of the global outbreak of novel coronavirus disease (COVID-19); the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company's ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company's patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

    The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company's 2019 Annual Report on Form 10-K and the company's other filings with the Securities and Exchange Commission (SEC) available at the SEC's Internet site (www.sec.gov).

    Please see Prescribing Information for KEYTRUDA (pembrolizumab) at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf and Medication Guide for KEYTRUDA at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_mg.pdf.

    View Full Article Hide Full Article
View All Merck & Company Inc. (new) News